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By studying a modified �unbiased� quantum multibaker map, we were able to obtain a finite asymptotic
quantum current without a classical analog. This result suggests a general method for the design of purely
quantum ratchets and sheds light on the investigation of the mechanisms leading to net transport generation by
breaking symmetries of quantum systems. Moreover, we propose the multibaker map as a resource to study
directed transport phenomena in chaotic systems without bias. In fact, this is a paradigmatic model in classical
and quantum chaos, but also in statistical mechanics.
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I. INTRODUCTION

In recent years many works have investigated different
kinds of transport phenomena in periodic dynamical systems
having no external net force or bias �the so-called ratchet
effect� �1�. This interest is of fundamental character, but it is
also motivated by the fact that many possible applications
exist. For example, they can be useful to understand and
develop rectifiers, pumps, particle separation devices, mo-
lecular switches, and transistors. Also, there is great interest
in biology, since the working principles of molecular motors
can be explained in terms of ratchet mechanisms �2�. Finally,
we would like to mention cold atoms and Bose-Einstein con-
densates as promising fields of application, thanks to recent
developments of the techniques needed to manipulate them
�3,4�. In the following we will have in mind systems that
present chaotic features, since ratchets generally behave this
way �5–7�. Hence, methods from classical and quantum
chaos become extremely useful.

The explanation of the appearance of a net current—i.e.,
average momentum different from zero—is one of the main
topics of this research. In a classical context, this behavior
can be understood in terms of broken symmetries. One of the
most convincing points of view up to now is that all symme-
tries of the system leading to momentum inversion �i.e., sign
change� should be broken in order to have a net directed
current �7�. This amounts to saying that, being only a neces-
sary condition, we can follow Curie’s principle and assume
that if the current is not forbidden by symmetries, then it
should be present. In non-Hamiltonian cases, the asymmetri-
zation of a chaotic attractor leads to a net directed current
�5�. In Hamiltonian systems the asymmetrization of a chaotic
layer embedded in a mixed phase space, for example, has the
same consequences for a set of initial conditions inside of it
�8,9�. In this case, a mixed dynamics is in general a neces-
sary condition �for a notable exception see �10,11��.

The vast majority of the previously mentioned papers
were focused on the classical aspects, leaving the quantum
side less explored. However, there have been several recent
publications that deal with this part of the problem. These
works regard both the experimental �12� �systems of cold
atoms, mainly� and the theoretical sides �8,10,13�. In general

the quantum versions share symmetry aspects with their clas-
sical counterparts, showing the corresponding current. But
sometimes the relation between symmetries and the gener-
ated current is less obvious in the quantum case. Tunneling,
for example, can modify the direction of the current �14�.
Interference, in any of its forms, generates more complex
behaviors �15�. In fact, we will see that the quantum and
classical behaviors can be very different.

A remarkable situation appears in some cases, when one
can find a net quantum current that does not have a classical
counterpart. This was essentially studied in Hamiltonian
�nondissipative� systems. The first time this phenomenon
was found was in the modified kicked rotor �KR� at quantum
resonance �i.e., the usual KR with a second harmonic in the
kick� �16,17�. This is a classically chaotic system where the
time-reversal symmetry changing the sign of the momentum
is kept. Later, in the case of the modified kicked Harper
model �18�, the classical current was found to be exceedingly
small in comparison with the quantum one. In all of these
cases the current does not reach an asymptotic value, and in
fact these systems were called quantum ratchet accelerators.
We present here a different behavior by means of a modified
multibaker map �19,20�. This system models a particle
evolving with free flights and collisions with fixed scatterers.
We were able to find a finite asymptotic current that is only
present in the quantized version. This suggests a general
method for obtaining purely quantum ratchets �no classical
current�, without unbounded acceleration. We propose this
system as a model to study general quantum transport phe-
nomena in the presence of asymmetries.

II. MODEL

The well-known classical baker’s transformation is an
area-preserving map defined on the unit square phase space
�0�q , p�1�. Here we use an asymmetric version which di-
vides the phase space into two regions with different areas
and Lyapunov exponents. The general form of this map can
be written in terms of one parameter s� �0,1�:
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Bs�q,p� � � �1

s
q,sp� , 0 � q � s ,

��1 − s�−1�q − s�,�1 − s�p + s� , s � q � 1,
	
�1�

where we can recover the usual symmetrical case by setting
s=1 /2. The geometric action of the map is represented in
Fig. 1 �top�.

The quantum version of the map is defined in a discrete
D-dimensional Hilbert space with h=1 /D in terms of the
quantum Fourier transform with antiperiodic boundary con-
ditions �21,22�:

B̂s = ĜD
†�ĜD1

0

0 ĜD2

� , �2�

�ĜD�kl � D−1/2e−i2��k+1/2��l+1/2�/D, �3�

where the allowed values of s are such that D1=sD and
D2=D−D1 are integer numbers. The same procedure can be
done to obtain an entire family of asymmetric quantum baker
maps �QBMs� �23,24�.

The classical multibaker map �19� is defined in a two-
dimensional lattice where the phase space at each lattice site
is a unit square. The dynamics of the map is a combination
of transport to neighboring cells and a local evolution within
a cell. The map is defined as Ms=Bs �T, where the baker term
is the asymmetric baker map defined in Eq. �1� applied on
each cell m, and the transport term is defined as

T = 
�m + 1,q,p� , 0 � q � 1/2,

�m − 1,q,p� , 1/2 � q � 1.
� �4�

The geometric action of the multibaker map in the phase
space of a lattice of squares is represented in Fig. 1 �bottom�.
While the baker’s map is asymmetric, the transport term is
unbiased as the phase-space volume is transported symmetri-
cally, as can be clearly seen. Notice that the transport is
entirely due to translations and therefore there are no tunnel-
ing effects from cell to cell.

This transformation is not biased either in the p or in the
q coordinate; the reason is that the baker transformation
maps the unit square onto itself and the transport term is
balanced, as previously explained. This is the equivalent to
the zero average net force typical of the dynamical systems
addressed in studies of directed transport �1�. In what follows
we will focus on the coarse-grained current, which in the
classical case is defined by

Jclass�t� = �m�t� − �m�t − 1� . �5�

In this expression �m�t� is the average value of the cell
position m for a given ensemble of initial conditions, at a
time t. It is easy to see that this definition does not take care
of the fluctuations inside of each cell. However, we underline
that there is no bias, making this model completely general.

From the classical point of view, the presence or absence
of an asymptotic current follows the general criteria specified
in �7� and depends on the symmetries that reverse the sign of
the transport. Here there are two such symmetries

SI: q → 1 − q, p → 1 − p, T → T , �6�

SII: q → p, p → q, T → T−1, t → − t . �7�

The first one maps Bs to B1−s and therefore is broken unless
s=1 /2. SII is a time-reversal symmetry and is preserved at all
times. Thus, according to the criteria of �7� there cannot be
an asymptotic classical current for unbiased initial condi-
tions. Transient effects can be present for biased conditions
but will die off very rapidly due to the exponential mixing
property of the Baker map. Numerical calculations confirm
this expectation �see the inset of Fig. 2�b� and caption�.

The quantum multibaker map is the composition of a
translation on the lattice site that depends on the value of the
projectors acting on the right and left subspaces of the baker
map at each cell �20�. This can be written as

M̂s � B̂s � T̂ = �Î � B̂s��Û � P̂R + Û†
� P̂L� , �8�

where PR and PL are the projectors and Û is a unitary trans-

lation operator acting on the lattice subspace Û�m= �m+1
�with ��m ,m= . . . ,−2 ,−1 ,0 ,1 ,2 , . . . � the basis set of the lat-
tice�.

III. NUMERICAL RESULTS

The discrete time propagation of an initial state
�0=�lat � �QBM is

(a)

(b)

FIG. 1. Geometric action of the asymmetric baker’s map on
each cell �top� and of the composition with the translation—i.e., the
asymmetric multibaker map �bottom�.
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��t� = �M̂s�t�0�M̂s
†�t. �9�

Here we will focus on initial states localized in one site of
the lattice �lat= �0�0�. A word regarding the analogy with
quantum walks is in order here. In fact, this system can be
thought as the D-dimensional quantum baker map coupled to
a quantum walker in an infinite-dimensional lattice �25,26�.
The role of the quantum coin in the quantum walk is per-
formed here by the quantum baker map. The fact that the
coin is classically ergodic is, however, an important differ-
ence and is a fundamental reason for having no classical
current.

The transport properties of the system can be computed
with the coarse-grained density of probabilities of the lattice.
This distribution is obtained by tracing out the internal de-
grees of freedom inside each cell and projecting on the lattice
basis. Since

P�m,t� = Tr���m�m� � IQBM���t�� , �10�

the mean values of the coarse-grained position and the quan-
tum current become

�x�t� = �
m=−�

�

mP�m,t� , �11�

J�t� = �x�t� − �x�t − 1� . �12�

We now turn to analyze the current behavior of this sys-
tem by means of numerical simulations. First, we point out
that if we take a mixed superposition of centered eigenstates
of momentum as the initial condition for the QBM, we find
that there is no current �J� for the symmetric case �s=1 /2�.
This confirms the need to break the SI symmetry in order to
have a net directed transport. Throughout the following cal-
culations we consider as initial condition the mixed state
corresponding to the incoherent superposition of the two
central momentum eigenstates—i.e.,

�QBM =
1

2
ĜD��D

2
− 1��D

2
− 1� + �D

2
��D

2
��ĜD

† .

�13�

Figure 2�a� shows the coarse-grained current as a function
of time with Hilbert space dimension D=32. We have plotted
the results corresponding to its maximum negative and posi-
tive asymptotic values, for which D1=17 and D1=30, re-
spectively (s=D1 /D� �0.5,1�). It is worth mentioning that J
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FIG. 2. �Color online� �a� Coarse-grained current J as a function
of time for the QBM with D=32 and D1=17 �dot-dashed line� and
D1=30 �dotted line�. As solid lines the smoothed current over 20
steps is shown. The solid line at J=0 corresponds to the classical
current calculated for 108 initial conditions. �b� The probability dis-
tribution P�m , t� at time t=200 for the same cases as before, s
=17 /32 and s=30 /32 in the classical and quantum versions with
D=32. In the inset we show how the net current becomes null in the
classical case for different initial conditions, calculated for 108

points in phase space, in particular for two squares of area 1 /16
centered in �q , p�= �1 /8,1 /2� �s=0.6 ��� and s=0.8 ���� and
�3 /8,1 /2� �s=0.6 ��� and s=0.8 ����.
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FIG. 3. �Color online� Averaged coarse-grained current �J �a�
for different values of the dimension of the Hilbert space �D� of the
QBM with fixed D1=D /2+1 and D1=D−2 and �b� for the rational
values of s=D1 /D� �0.5;1� with D=16,32,64. The average of J is
computed up to 450 iterations of the different maps beginning with
t=100 �where the current approximately reaches its asymptotic
behavior�.
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rapidly reaches a stationary behavior �at about t=50� with
fluctuations centered around a finite nonzero value as is il-
lustrated by the smoothed current in Fig. 2 �solid lines�. This
shows that no unbounded acceleration is present, so there is
a rectification of transport rather than an effective force in
this purely quantum ratchet. The classical current for analog
initial conditions is also displayed, being zero at all times. In
Fig. 2�b� we show the probability distribution P�m , t� and its
classical version.

In Fig. 3�a� we can see the averaged �asymptotic� coarse
grained current �J as a function of the Hilbert space dimen-
sion D for D1=D−2 and D1=D /2−1 �in order to make this
averages we have taken the values of the current from
t=100 up to t=450�. These cases are those at which J ap-
proximately reaches its maxima in absolute value �positive
and negative current, respectively�. We observe a smooth
dependence of this quantity on D �apart from small fluctua-
tions�, showing that the effect is generic. In fact, this situa-
tion is completely different from previous cases �16,17�. In
these works a purely quantum current was found only at
resonant values of a modified KR.

In Fig. 3�b� we show the averaged current versus s for
different fixed values of D with s�0.5. We do not show
values for s	0.5 since J turns out to be an odd function of s
around s=0.5 ��Js=−�J1−s�. In fact, if we apply the sym-
metry transformation SI to Eq. �9� and then trace out the
internal degrees of freedom inside of each cell, we obtain
that Ps�m , t�= P1−s�−m , t� for all t. This result is valid for any
initial �QBM symmetrical under SI. Therefore, the symmetry
of the current becomes clear �details will be presented else-
where �28��. As a consequence, there is a simple way to
obtain current inversion in our system.

IV. CONCLUSIONS

In summary, we have found a finite asymptotic current in
a modified and unbiased quantum multibaker map; this cur-
rent has no classical counterpart. Moreover, we can invert its
direction by exploiting a symmetry with respect to the SI
transformation. This is much in the same spirit as the corre-
sponding current inversions found in the literature �6,11�.

The behavior of our system is rather similar to what hap-
pens in quantum walks. Different combinations of the initial
states and/or the unitary operators associated with the quan-
tum coin produce a different bias in the final distribution of
probabilities �27�. We believe that this property, which is of
pure quantum origin, is the reason for finding a net transport
in our system. In fact, we think that the existence of a net
current is due exclusively to interference effects which per-
sists in the D→� limit. To obtain the classical behavior—
i.e., a vanishing current—some noise has to be introduced,
just as in the case of a quantum walk �26�.

We underline that this is a completely different case than
that explained in �13�, where the quantum current appearance
is explained by means of the desymmetrization of Floquet
states, a fact that can be directly related to the corresponding
classical properties of the system. A detailed study of this
will be presented elsewhere �28�. Finally, we consider that
the features of this map can be exploited to design generic
Hamiltonian systems that behave in a similar way. In that
case, there will be the possibility to implement them in cold
atom experiments.
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